Single electrons from semileptonic charm meson decays in pp collisions at 200 GeV Xinhua Li (UC Riverside) for the PHENIX Collaboration 2003 DNP Fall Meeting Oct. 30 – Nov. 1, 2003 Tucson, Arizona ## Why Charm in p+p Collisions @ RHIC Charm production mainly through gluon-gluon fusion and quark-antiquark annihilation. Quark-gluon scattering also involved at higher order. Charm measurement intrinsically interesting. #### Reference to understand: - charm production in heavy ion collisions probe of initial state and state of nuclear medium - J/ Ψ suppression in heavy ion collision one of signature of QGP ## PHENIX in Run2 p+p at 200 GeV #### This analysis uses: 15M MiniBias events in |Z_{vertex}| < 25 cm 465M sampled events by Level1 Trigger #### For electron measurements ■ BBC: vertex position, trigger DC, PC1: tracking momentum measurement RICH: electron ID PC3: charge veto for photon ID ■ EMCal: electron ID energy measurement ### How to detect Charm #### Direct method: Reconstruction of D-meson (e.g. $D^0 \rightarrow K^- \pi^+$). Very challenging without Vertex. Indirect method: Measure leptons from semileptonic decay of charm mesons. Used at PHENIX. # Challenging at PHENIX Charm e/ $\pi \sim 3-4x10^{-4}$ expected in p+p @ 200 GeV #### **Backgounds** $$\pi^{0} \rightarrow e^{+}e^{-} \gamma$$ $$\pi^{0} \rightarrow \gamma \gamma$$ $$\downarrow \qquad \qquad e^{+}e^{-}$$ **Dalitz:** Branching Fraction=1.2% **Conversion: comparable to Dalitz** $$\eta \rightarrow e^{+}e^{-}\gamma$$ $$\eta \rightarrow \gamma \gamma$$ $$e^{+}e^{-}$$ e^+e^- 20% of π^0 contribution at high pt Others small, e.g. K, ρ , ω , η ', ϕ decays ## Three approaches at PHENIX Photon converter method: requires good statistics of dedicated converter run Cocktail method: needs full knowledge of π^0 spectrum GC.010 Sergey Butsyk (e, γ) coincidence method: π^0 yield not necessary this talk # Way to charm signal #### Simulate π^0 decays according to PDG $$Br(\pi^0 -> \gamma \gamma) = 98.8\%$$ $$Br(\pi^0 -> \gamma e^+ e^-) = 1.2\%$$ Reconstruct π^0 by (e, γ) coincidence **Calculate R=coincidence / electron inclusive** non- π^0 related/electron inclusive = 1 - R(data)/R(simulation) ## Simulation input π⁰ is well measured at PHENIX for p+p @ 200 GeV hep-ex/0304038 absolutenormalization(A) is not usedin simulation # (e, γ) coincidence internal/external γ conversion: $\pi^0 \rightarrow \gamma e^+e^-$ **Reconstruct** π^0 from (e,γ) coincidence η also possible in high statistics ## Rate of (e,γ) coincidence coincidence increases with pt due to less bending in field no coincidence from charm meson decays data < simulation $at \ high \ p_t$ no charm expected to be seen at low p_t data=simulation ## Outlook New method to extract electron signal from Charm/Bottom meson decays Robust: require knowledge only of $\pi^{0/}\eta$ slope absolute normalization not necessary Will finalize PHENIX Run2 pp data analysis Applicable to dAu, AuAu data analysis